In the Max $r$-SAT problem, the input is a CNF formula with $n$ variables where each clause is a disjunction of at most $r$ literals. The objective is to compute an assignment which satisfies as many of the clauses as possible. While there are a large number of polynomial-time approximation algorithms for this problem, we take the viewpoint of space complexity following [Biswas et al., Algorithmica 2021] and design sublinear-space approximation algorithms for the problem. We show that the classical algorithm of [Lieberherr and Specker, JACM 1981] can be implemented to run in $n^{O(1)}$ time while using $(\log{n})$ bits of space. The more advanced algorithms use linear or semi-definite programming, and seem harder to carry out in sublinear space. We show that a more recent algorithm with approximation ratio $\sqrt{2}/2$ [Chou et al., FOCS 2020], designed for the streaming model, can be implemented to run in time $n^{O(r)}$ using $O(r \log{n})$ bits of space. While known streaming algorithms for the problem approximate optimum values and use randomization, our algorithms are deterministic and can output the approximately optimal assignments in sublinear space. For instances of Max $r$-SAT with planar incidence graphs, we devise a factor-$(1 - \epsilon)$ approximation scheme which computes assignments in time $n^{O(r / \epsilon)}$ and uses $\max\{\sqrt{n} \log{n}, (r / \epsilon) \log^2{n}\}$ bits of space.


翻译:在 最大 $ = SAT 问题中, 输入是一个 CNF 公式, 含有 $n 变量, 其中每个条款都是 $ $ 的脱钩 。 目标是计算一个尽可能满足多个条款的任务 。 虽然对此问题有大量的多元时间近似算法, 但是在 [ Biswas et al., Algorithmica 2021] 之后, 我们从空间复杂性的角度来看待 。 我们显示, 为流动模型设计的 [利贝勒和斯派克, JACM 1981] 经典算法可以以 $ O(1) 美元运行 。 使用 $ (log{n} } $ 。 虽然更先进的算法使用线性或半确定性的程序, 似乎更难在亚线性空间中执行。 我们显示, 用于流动模型的 $ sqr = = 美元 。 comliar_ = 2. [CFOC 2020] 的较近的算法, 可以用时间 = 美元 。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月4日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员