We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert--Artin, Reznick, Putinar, and Putinar--Vasilescu Positivstellens\"atze. First, we establish that a polynomial matrix $P(x)$ with chordal sparsity is positive semidefinite for all $x\in \mathbb{R}^n$ if and only if there exists a sum-of-squares (SOS) polynomial $\sigma(x)$ such that $\sigma P$ is a sum of sparse SOS matrices. Second, we show that setting $\sigma(x)=(x_1^2 + \cdots + x_n^2)^\nu$ for some integer $\nu$ suffices if $P$ is homogeneous and positive definite globally. Third, we prove that if $P$ is positive definite on a compact semialgebraic set $\mathcal{K}=\{x:g_1(x)\geq 0,\ldots,g_m(x)\geq 0\}$ satisfying the Archimedean condition, then $P(x) = S_0(x) + g_1(x)S_1(x) + \cdots + g_m(x)S_m(x)$ for matrices $S_i(x)$ that are sums of sparse SOS matrices. Finally, if $\mathcal{K}$ is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for $(x_1^2 + \ldots + x_n^2)^\nu P(x)$ with some integer $\nu\geq 0$ when $P$ and $g_1,\ldots,g_m$ are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones.


翻译:首先,我们确定,对于所有以美元计的(sem) 位數(sem) 的數量(omi) 的數量(omet) 的數量(finite ponomial commmex),如果存在以美元計的數量(SOS) 的數量(mus-Artin)、雷兹尼克、普京和普京-Vasilescu Positiverslenes\'atze。首先,我们确定,如果以美元计的數量(x) 的數量(x) 數量(m) 的數量(x) 數量(m) 的數量(m) 數量(xaltial2) 的數量(n_n%2) 數量(t) 數量的數量(m) 數值(m) 數值(美元或數值(美元)的數值(美元)的數量(美元)的數值(美元)的數值(m) 數值(x數值(x數值(x數值)的數值(x數值)的數值(x數值(x數值)的數值)的數值(x數值)的數值(m)。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员