The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal graphs. For each of these graph families, we present space-efficient algorithms for the Reachability problem. For intersection graphs of Jordan regions, we show how to obtain a "good" vertex separator in a space-efficient manner and use it to solve the Reachability in polynomial time and $O(m^{1/2}\log n)$ space, where $n$ is the number of Jordan regions, and $m$ is the total number of crossings among the regions. We use a similar approach for chordal graphs and obtain a polynomial-time and $O(m^{1/2}\log n)$ space algorithm, where $n$ and $m$ are the number of vertices and edges, respectively. However, we use a more involved technique for unit contact disk graphs (penny graphs) and obtain a better algorithm. We show that for every $\epsilon> 0$, there exists a polynomial-time algorithm that can solve Reachability in an $n$ vertex directed penny graph, using $O(n^{1/4+\epsilon})$ space. We note that the method used to solve penny graphs does not extend naturally to the class of geometric intersection graphs that include arbitrary size cliques.
翻译:图形“ 可获得性” 问题在于确定在给定的图形中是否有从一个顶点到另一个顶点的路径。 在本文中, 我们研究三个不同的图形组的“ 可实现性问题 ” : 约旦地区的交叉图、 单位接触磁盘图( Penny 图形) 和 chordal 图形。 对于每个图形组, 我们为可实现性问题提供空间效率算法。 对于约旦地区的交叉图, 我们展示如何以空间高效的方式获得一个“ 良好” 顶点分隔器, 并使用它来解决多元时段和美元( $O% 1/2 log n) 空间中的可实现性。 然而, 我们使用一个更相关的技术, 美元是约旦地区的数量, 单位联系磁盘图( penny 图表), 我们用一个更好的方法来显示一张磁盘的平面图( 美元 ) 。 我们用一个更精细的平面图来显示 。