The hidden subgroup problem ($\mathsf{HSP}$) has been attracting much attention in quantum computing, since several well-known quantum algorithms including Shor algorithm can be described in a uniform framework as quantum methods to address different instances of it. One of the central issues about $\mathsf{HSP}$ is to characterize its quantum/classical complexity. For example, from the viewpoint of learning theory, sample complexity is a crucial concept. However, while the quantum sample complexity of the problem has been studied, a full characterization of the classical sample complexity of $\mathsf{HSP}$ seems to be absent, which will thus be the topic in this paper. $\mathsf{HSP}$ over a finite group is defined as follows: For a finite group $G$ and a finite set $V$, given a function $f:G \to V$ and the promise that for any $x, y \in G, f(x) = f(xy)$ iff $y \in H$ for a subgroup $H \in \mathcal{H}$, where $\mathcal{H}$ is a set of candidate subgroups of $G$, the goal is to identify $H$. Our contributions are as follows: For $\mathsf{HSP}$, we give the upper and lower bounds on the sample complexity of $\mathsf{HSP}$. Furthermore, we have applied the result to obtain the sample complexity of some concrete instances of hidden subgroup problem. Particularly, we discuss generalized Simon's problem ($\mathsf{GSP}$), a special case of $\mathsf{HSP}$, and show that the sample complexity of $\mathsf{GSP}$ is $\Theta\left(\max\left\{k,\sqrt{k\cdot p^{n-k}}\right\}\right)$. Thus we obtain a complete characterization of the sample complexity of $\mathsf{GSP}$.
翻译:隐藏的子小组问题 (mathsf{HSP}$) 已经在量子计算中引起很多注意, 因为包括Shor 算法在内的一些著名的量子算法在统一框架中可以描述为处理不同情况的量子方法。 有关$\mathsf{HSP} 的核心问题之一是其量子/ 古典复杂性。 例如, 从学习理论的角度来看, 样本的复杂性是一个关键的概念。 然而, 尽管已经研究过这一问题的量样本复杂性, 似乎没有包括包括Shor 运算法在内的一些著名的量子算法, 包括Shor 运算法, 这将成为本文的主题 。 $\ mathf} 用于一个限定组的美元。 对于一个限定组来说, $G$ 和一个限定的 美元, 对于任何 $xx, y, fxx, f(x) = f, f(x) y, f) 美元的典型样本复杂性, $x, 美元, 美元, 美元 美元 和 美元 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 质, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 质, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 。