We develop a network of Bayesian agents that collectively model the mental states of teammates from the observed communication. Using a generative computational approach to cognition, we make two contributions. First, we show that our agent could generate interventions that improve the collective intelligence of a human-AI team beyond what humans alone would achieve. Second, we develop a real-time measure of human's theory of mind ability and test theories about human cognition. We use data collected from an online experiment in which 145 individuals in 29 human-only teams of five communicate through a chat-based system to solve a cognitive task. We find that humans (a) struggle to fully integrate information from teammates into their decisions, especially when communication load is high, and (b) have cognitive biases which lead them to underweight certain useful, but ambiguous, information. Our theory of mind ability measure predicts both individual- and team-level performance. Observing teams' first 25% of messages explains about 8% of the variation in final team performance, a 170% improvement compared to the current state of the art.


翻译:我们开发了一个贝叶斯代理网络,共同模拟观察到的交流中的队友心理状态。通过生成性的认知计算方法,我们提出了两点贡献。首先,我们展示了我们的代理能够产生干预措施,提高人工智能和人类团队的智能集体,超越单独的人类的能力。其次,我们开发了一种实时的人类心理理论能力的测量方法,并测试有关人类认知的理论。我们使用从在线实验中收集的数据,其中145名个体参与了由五人组成的29个人类团队,通过聊天系统通信来解决认知任务。我们发现,人类(a)难以将队友的信息完全整合到他们的决策中,特别是当通信负载很高时;并且,(b)存在认知偏见,导致他们低估某些有用但模糊的信息。我们的心理理论能力测量可以预测个人和团队层面的表现。检查团队前25%的消息就可以解释最终团队表现的大约8%的变化,这比目前的技术状态提高了170%。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员