机器学习涉及的是通过经验自动提高其性能的计算机程序(例如,学习人脸识别,推荐音乐和电影,以及驱动自主机器人的程序)。本课程从多种角度涵盖了机器学习的理论和实际算法。我们涵盖了贝叶斯网络、决策树学习、支持向量机、统计学习方法、无监督学习和强化学习等主题。课程涵盖的理论概念如归纳偏差,PAC学习框架,贝叶斯学习方法,基于边际的学习,和奥卡姆剃刀。编程作业包括各种学习算法的动手实验。本课程旨在为研究生提供机器学习研究人员所需要的方法论、技术、数学和算法的全面基础知识。

学习成果: 课程结束时,学生应能够:

实现并分析现有的学习算法,包括为分类、回归、结构预测、聚类和表示学习而充分研究的方法 将实际机器学习的多个方面集成到一个系统中:数据预处理、学习、正则化和模型选择 描述学习模型和算法的形式属性,并解释这些结果的实际含义 比较和对比不同的学习范式(监督的、非监督的,等等) 设计实验评估和比较不同的机器学习技术在现实世界的问题 运用概率论、统计学、微积分、线性代数和最优化来开发新的预测模型或学习方法 给出一种ML技术的描述,分析它,确定(1)形式主义的表达能力;(2)算法中隐含的归纳偏差;(3)搜索空间

参考书籍:

Machine Learning, Tom Mitchell. Machine Learning: a Probabilistic Perspective, Kevin Murphy. Full online access is free through CMU’s library – for the second link, you must be on CMU’s network or VPN. A Course in Machine Learning, Hal Daumé III. Online only.

目录内容: Classification & Regression Linear Models 深度学习 强化学习 生成模型 概率图模型 学习理论 学习方式

成为VIP会员查看完整内容
63

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【斯坦福经典书】机器学习导论,188页pdf
专知会员服务
77+阅读 · 2021年3月31日
专知会员服务
43+阅读 · 2020年11月27日
专知会员服务
53+阅读 · 2020年10月11日
【经典书】人工智能及机器学习导论,457页pdf
专知会员服务
160+阅读 · 2020年7月5日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
集成学习相关资源大列表
专知
9+阅读 · 2019年8月5日
(免费精品课程分享)-PyTorch深度学习实战
深度学习与NLP
18+阅读 · 2018年10月28日
多伦多大学“神经网络与机器学习导论(2018年春季)
人工智能头条
14+阅读 · 2018年4月3日
吴恩达机器学习课程
平均机器
9+阅读 · 2018年2月5日
盘点15个机器学习网络课程和文字教程
论智
7+阅读 · 2017年12月25日
【资源】15个在线机器学习课程和教程
专知
8+阅读 · 2017年12月22日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关VIP内容
【斯坦福经典书】机器学习导论,188页pdf
专知会员服务
77+阅读 · 2021年3月31日
专知会员服务
43+阅读 · 2020年11月27日
专知会员服务
53+阅读 · 2020年10月11日
【经典书】人工智能及机器学习导论,457页pdf
专知会员服务
160+阅读 · 2020年7月5日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
微信扫码咨询专知VIP会员