BACKGROUND: Random-effects meta-analysis within a hierarchical normal modeling framework is commonly implemented in a wide range of evidence synthesis applications. More general problems may even be tackled when considering meta-regression approaches that in addition allow for the inclusion of study-level covariables. METHODS: We describe the Bayesian meta-regression implementation provided in the bayesmeta R package including the choice of priors, and we illustrate its practical use. RESULTS: A wide range of example applications are given, such as binary and continuous covariables, subgroup analysis, indirect comparisons, and model selection. Example R code is provided. CONCLUSIONS: The bayesmeta package provides a flexible implementation. Due to the avoidance of MCMC methods, computations are fast and reproducible, facilitating quick sensitivity checks or large-scale simulation studies.
翻译:背景:在等级正常模型框架内的随机效应元分析通常在一系列广泛的证据综合应用中实施。在考虑元回归方法时,甚至可以解决更为普遍的问题,这些方法还允许纳入研究水平的共变量。方法:我们描述了Bayesmeta R软件包中提供的巴伊西亚元回归实施,包括前科的选择,并说明了其实际用途。成果:提供了一系列广泛的应用实例,如二进制和连续共变量、分组分析、间接比较和模型选择。提供了示例R代码。结论:Bayesmeta软件包提供了灵活的实施。由于避免了MCMCM方法,计算是快速和可复制的,便利了快速敏感度检查或大规模模拟研究。