In the usual Bayesian setting, a full probabilistic model is required to link the data and parameters, and the form of this model and the inference and prediction mechanisms are specified via de Finetti's representation. In general, such a formulation is not robust to model mis-specification of its component parts. An alternative approach is to draw inference based on loss functions, where the quantity of interest is defined as a minimizer of some expected loss, and to construct posterior distributions based on the loss-based formulation; this strategy underpins the construction of the Gibbs posterior. We develop a Bayesian non-parametric approach; specifically, we generalize the Bayesian bootstrap, and specify a Dirichlet process model for the distribution of the observables. We implement this using direct prior-to-posterior calculations, but also using predictive sampling. We also study the assessment of posterior validity for non-standard Bayesian calculations. We provide a computationally efficient way to calibrate the scaling parameter in the Gibbs posterior so that it can achieve the desired coverage rate. We show that the developed non-standard Bayesian updating procedures yield valid posterior distributions in terms of consistency and asymptotic normality under model mis-specification. Simulation studies show that the proposed methods can recover the true value of the parameter efficiently and achieve frequentist coverage even when the sample size is small. Finally, we apply our methods to evaluate the causal impact of speed cameras on traffic collisions in England.
翻译:在通常的巴伊西亚环境下,需要一种完全的概率模型来将数据和参数联系起来,而这种模型的形式和推断及预测机制则通过De Finetti的表示方式加以说明。一般来说,这种配方并不健全,无法模拟其各组成部分的特异性。另一种办法是根据损失功能作出推论,将利息数量界定为某种预期损失的最小值,并根据基于损失的配方来建立后方分布;这一战略支持Gibbbs 后方阵列的构建。我们制定了一种非参数非参数性非参数性方法;具体地说,我们将Bayesti的靴圈加以概括化,并具体地规定一个用于分配可观测的Drichlet进程模型。我们采用直接的先到后方的计算方法,但也使用预测性抽样。我们还研究了对非标准巴伊西亚计算后方的后方位有效性的评估。我们提供了一种高效的计算方法来校准Gbbbbs 后方阵列的缩缩缩比参数,以便达到理想的覆盖率率;我们指出,在Sayes imal imal imal imal imal resmissation resulation Proview Proview roduphildal roduphildal rodu平 方法中,我们提出了正常的正常的平比比值研究方法。