Structural integrity is vital for maintaining the safety and longevity of concrete infrastructures such as bridges, tunnels, and walls. Traditional methods for detecting damages like cracks and spalls are labor-intensive, time-consuming, and prone to human error. To address these challenges, this study explores advanced data-driven techniques using deep learning for automated damage detection and analysis. Two state-of-the-art instance segmentation models, YOLO-v7 instance segmentation and Mask R-CNN, were evaluated using a dataset comprising 400 images, augmented to 10,995 images through geometric and color-based transformations to enhance robustness. The models were trained and validated using a dataset split into 90% training set, validation and test set 10%. Performance metrics such as precision, recall, mean average precision (mAP@0.5), and frames per second (FPS) were used for evaluation. YOLO-v7 achieved a superior mAP@0.5 of 96.1% and processed 40 FPS, outperforming Mask R-CNN, which achieved a mAP@0.5 of 92.1% with a slower processing speed of 18 FPS. The findings recommend YOLO-v7 instance segmentation model for real-time, high-speed structural health monitoring, while Mask R-CNN is better suited for detailed offline assessments. This study demonstrates the potential of deep learning to revolutionize infrastructure maintenance, offering a scalable and efficient solution for automated damage detection.
翻译:暂无翻译