Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.
翻译:域适应是一项重要但具有挑战性的任务。 大部分现有域适应方法都试图利用相交域域信息和语义信息在地貌空间上提取域变量代表。 不同于以往在相缠的地貌空间上的努力, 我们的目标是在数据的潜在分解的语义代表( DSR)中提取域变量语义信息。 在 DSR 中, 我们假设数据生成过程由两组独立的变量, 即语义潜在变量和域位潜在变量来控制。 根据上述假设, 我们使用一个可变自动编码来重建数据背后的语义潜在变量和域值潜在变量。 我们还设计了一个双对称网络来分离这两组重建的潜在变量。 相缠绕的语义潜在变量最终在不同领域进行了调整。 实验研究证明, 我们的模型在几个域适应基准数据集上产生了状态的艺术表现。