We consider the setting of an aggregate data meta-analysis of a continuous outcome of interest. When the distribution of the outcome is skewed, it is often the case that some primary studies report the sample mean and standard deviation of the outcome and other studies report the sample median along with the first and third quartiles and/or minimum and maximum values. To perform meta-analysis in this context, a number of approaches have recently been developed to impute the sample mean and standard deviation from studies reporting medians. Then, standard meta-analytic approaches with inverse-variance weighting are applied based on the (imputed) study-specific sample means and standard deviations. In this paper, we illustrate how this common practice can severely underestimate the within-study standard errors, which results in overestimation of between-study heterogeneity in random effects meta-analyses. We propose a straightforward bootstrap approach to estimate the standard errors of the imputed sample means. Our simulation study illustrates how the proposed approach can improve estimation of the within-study standard errors and between-study heterogeneity. Moreover, we apply the proposed approach in a meta-analysis to identify risk factors of a severe course of COVID-19.


翻译:我们考虑对连续结果进行综合数据元分析。当结果的分布出现偏斜时,经常出现这样的情况:一些初级研究报告结果的抽样平均值和标准偏差,而其他研究则报告结果的抽样平均值和标准偏差,以及第一和第二四分和/或最低值和最大值。为了在这方面进行元分析,最近制定了一些办法,对抽样平均值和标准偏差进行估算,以估算与研究报告中位数的抽样平均值和标准偏差。然后,根据(估计的)特定研究抽样方法和标准偏差,采用具有逆偏差的标准元分析方法。在本文件中,我们说明这种共同做法如何严重低估研究中的标准差,从而导致对随机效应元分析中的研究间异性高估计过高。我们建议了一种直截了当的靴式方法,用以估计浸漏抽样手段的标准差。我们的模拟研究研究表明,拟议的方法如何能够改进对研究中标准错误的估计和研究中位数之间的偏差。此外,我们运用了拟议的方法来严重低估研究中位风险。此外,我们在一项元分析过程中采用拟议的方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月18日
Arxiv
0+阅读 · 2022年8月17日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员