We study generic inference on identified linear functionals of nonunique nuisances defined as solutions to underidentified conditional moment restrictions. This problem appears in a variety of applications, including nonparametric instrumental variable models, proximal causal inference under unmeasured confounding, and missing-not-at-random data with shadow variables. Although the linear functionals of interest, such as average treatment effect, are identifiable under suitable conditions, nonuniqueness of nuisances pose serious challenges to statistical inference, since in this setting common nuisance estimators can be unstable and lack fixed limits. In this paper, we propose penalized minimax estimators for the nuisance functions and show they enable valid inference in this challenging setting. The proposed nuisance estimators can accommodate flexible function classes, and importantly, they can converge to fixed limits determined by the penalization, regardless of whether the nuisances are unique or not. We use the penalized nuisance estimators to form a debiased estimator for the linear functional of interest and prove its asymptotic normality under generic high-level conditions, which provide for asymptotically valid confidence intervals.
翻译:我们研究关于已查明的非独特骚扰的线性功能的一般推论,这些功能被界定为对未确定的有条件时刻限制的解决方案。这个问题出现在各种应用中,包括非参数工具变量模型、未测量的混杂状态下可能的因果推论,以及缺少非随机数据的影子变量数据。虽然在适当条件下可以识别出诸如平均治疗效果等相关线性功能,但非骚扰对统计推断构成严重挑战,因为在这一设置中,共同的骚扰估计者可能是不稳定的,并且缺乏固定的限度。在本文中,我们提议对破坏功能功能的微缩估计器进行惩罚,并表明它们能够使这一具有挑战性的环境产生有效的推论。拟议的微缩估计器可以容纳灵活的功能类别,重要的是,它们可以与惩罚所决定的固定限度汇合在一起,而不论骚扰是否独特。我们使用惩罚性估算器来形成一种有偏见的估量器。我们使用惩罚性估测器来对调的调功能性功能性功能性水平提供正常的正常的间隔期,并证明其正常的正常性水平。