Given the importance of continuous-time stochastic volatility models to describe the dynamics of interest rates, we propose a goodness-of-fit test for the parametric form of the drift and diffusion functions, based on a marked empirical process of the residuals. The test statistics are constructed using a continuous functional (Kolmogorov-Smirnov and Cram\'er-von Mises) over the empirical processes. In order to evaluate the proposed tests, we implement a simulation study, where a bootstrap method is considered for the calibration of the tests. As the estimation of diffusion models with stochastic volatility based on discretely sampled data has proven difficult, we address this issue by means of a Monte Carlo study for different estimation procedures. Finally, an application of the procedures to real data is provided.
翻译:鉴于连续时间随机波动模型对描述利率动态的重要性,我们建议根据对残余物的明显经验过程,对漂移和传播功能的参数形式进行完善的测试。测试统计数据是用对经验过程的连续功能(Kolmogorov-Smirnov和Cram\'er-von Mises)来构建的。为了评估拟议的测试,我们进行了模拟研究,考虑用靴套方法来校准测试。由于根据独立抽样数据对具有随机波动性的传播模型进行估计已经证明很困难,我们通过对不同估算程序进行蒙特卡洛研究来解决这一问题。最后,我们提供了对真实数据应用程序的情况。