Safe reinforcement learning (RL) aims to solve an optimal control problem under safety constraints. Existing $\textit{direct}$ safe RL methods use the original constraint throughout the learning process. They either lack theoretical guarantees of the policy during iteration or suffer from infeasibility problems. To address this issue, we propose an $\textit{indirect}$ safe RL method called feasible policy iteration (FPI) that iteratively uses the feasible region of the last policy to constrain the current policy. The feasible region is represented by a feasibility function called constraint decay function (CDF). The core of FPI is a region-wise policy update rule called feasible policy improvement, which maximizes the return under the constraint of the CDF inside the feasible region and minimizes the CDF outside the feasible region. This update rule is always feasible and ensures that the feasible region monotonically expands and the state-value function monotonically increases inside the feasible region. Using the feasible Bellman equation, we prove that FPI converges to the maximum feasible region and the optimal state-value function. Experiments on classic control tasks and Safety Gym show that our algorithms achieve lower constraint violations and comparable or higher performance than the baselines.


翻译:安全强化学习(RL)旨在在安全约束下解决最优控制问题。现有的$\textit{直接}$安全 RL 方法在整个学习过程中使用原始约束。它们要么缺乏迭代过程中策略的理论保证,要么面临不可行性问题。为了解决这个问题,我们提出了一种$\textit{间接}$安全 RL 方法,称为可行策略迭代(FPI),它使用上一策略的可行区域迭代地约束当前策略。可行区域由一种称为约束衰减函数(CDF)的可行性函数表示。FPI 的核心是一种称为可行策略改进的区域性策略更新规则,它在可行区域内在约束CDF的条件下最大化回报,在可行区域外最小化CDF。此更新规则始终可行,并确保可行区域在内部提高状态值函数的单调递增。使用可行贝尔曼方程,我们证明 FPI 收敛于最大可行区域和最优状态值函数。在经典控制任务和 Safety Gym 上进行的实验表明,我们的算法实现了更低的约束违规和与基线相当或更高的性能。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员