As it is known, universal codes, which estimate the entropy rate consistently, exist for any stationary ergodic source over a finite alphabet but not over a countably infinite one. We cast the problem of universal codes into the problem of universal densities with respect to a given reference measure on a countably generated measurable space, examples being the counting measure or the Lebesgue measure. We show that universal densities, which estimate the differential entropy rate consistently, exist if the reference measure is finite, which disproves that the assumption of a finite alphabet is necessary in general. To exhibit a universal density, we combine the prediction by partial matching (PPM) universal code with the non-parametric differential (NPD) entropy rate estimator, putting a prior both over all Markov orders and all quantization levels. The proof of universality applies Barron's asymptotic equipartition for densities and the monotone convergence of $f$-divergences for filtrations. As an application, we show that there exists a strongly consistent entropy rate estimator with respect to the Lebesgue measure in the class of stationary ergodic Gaussian processes.
翻译:众所周知,对恒定的成文体源,对恒定的成文数率进行一致估计的通用代码,存在于一个固定的成文体源上,但并不存在于一个可计算到的无限的成文体上。我们把通用编码问题放到一个可计算到的可计量空间上,在某个特定参照度尺度上,在可计算到的可测量空间上,在可计算测量空间或Lebesgue测量尺度上,在可计算到的成文量上,我们发现,如果参照度是有限的,则对不同的成文率进行一致的估计,即存在普遍性的;如果参照度尺度是有限的,这不符合假定一般必须假定一定的成文数。为了显示一个普遍密度,我们通过部分匹配(PPM)通用编码将预测与非准度差异(NPD)的成本速率天分数标值标值标值标值标值的通用编码结合起来,先于所有Markov订单和所有量度等级等级。我们发现,普遍性的证据是Barron对密度的成文的单体装配制调调的,而单调的加固化。作为一个应用,我们表明,存在着一种非常一致的成制的成品定数的成品定位测量标值的测量度测量度的测量度值。