Federated Learning (FL) is an emerging direction in distributed machine learning (ML) that enables in-situ model training and testing on edge data. Despite having the same end goals as traditional ML, FL executions differ significantly in scale, spanning thousands to millions of participating devices. As a result, data characteristics and device capabilities vary widely across clients. Yet, existing efforts randomly select FL participants, which leads to poor model and system efficiency. In this paper, we propose Kuiper to improve the performance of federated training and testing with guided participant selection. With an aim to improve time-to-accuracy performance in model training, Kuiper prioritizes the use of those clients who have both data that offers the greatest utility in improving model accuracy and the capability to run training quickly. To enable FL developers to interpret their results in model testing, Kuiper enforces their requirements on the distribution of participant data while improving the duration of federated testing by cherry-picking clients. Our evaluation shows that, compared to existing participant selection mechanisms, Kuiper improves time-to-accuracy performance by 1.2x-14.1x and final model accuracy by 1.3%-9.8%, while efficiently enforcing developer requirements on data distributions at the scale of millions of clients.


翻译:联邦学习组织(FL)是分布式机器学习(ML)的一个新方向,它使现场示范培训和测试边缘数据得以进行。尽管其最终目标与传统的ML相同,但FL处决的规模差异很大,涉及数千至数百万个参与装置,因此,不同客户的数据特点和装置能力差异很大。然而,现有努力随机挑选FL参与者,导致模式和系统效率低下。在本文件中,我们提议Kuiper改进Federal培训的绩效和采用有指导的参与者选择进行的测试。为了改进模型培训的时间到准确性绩效,Kuiper优先使用既拥有最有助于提高模型准确性、又能迅速开展培训的客户。为了使FL开发者能够在模型测试中解释其结果,Kuiper执行关于分发参与者数据的要求,同时改进选美食客户的填充测试时间。我们的评估表明,与现有参与者选择机制相比,Kuiper改进了模型准确性绩效,1.2x-14.1xxxx和最终模型客户在1.3%-9%的数据比例上有效进行数据分配。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2020年11月27日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员