Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize a region proposal network to propose a handful of high-quality proposals in a bottom-up fashion. 2) Resize and pool the semantic features from the proposed regions to summarize RoI-wise representations for further refinement. Note that these RoI-wise representations in step 2) are considered individually as uncorrelated entries when fed to following detection headers. Nevertheless, we observe these proposals generated by step 1) offset from ground truth somehow, emerging in local neighborhood densely with an underlying probability. Challenges arise in the case where a proposal largely forsakes its boundary information due to coordinate offset while existing networks lack corresponding information compensation mechanism. In this paper, we propose $BADet$ for 3D object detection from point clouds. Specifically, instead of refining each proposal independently as previous works do, we represent each proposal as a node for graph construction within a given cut-off threshold, associating proposals in the form of local neighborhood graph, with boundary correlations of an object being explicitly exploited. Besides, we devise a lightweight Region Feature Aggregation Module to fully exploit voxel-wise, pixel-wise, and point-wise features with expanding receptive fields for more informative RoI-wise representations. We validate BADet both on widely used KITTI Dataset and highly challenging nuScenes Dataset. As of Apr. 17th, 2021, our BADet achieves on par performance on KITTI 3D detection leaderboard and ranks $1^{st}$ on $Moderate$ difficulty of $Car$ category on KITTI BEV detection leaderboard. The source code is available at https://github.com/rui-qian/BADet.
翻译:目前,现有最先进的3D物体探测器处于两阶段范式中,这些方法通常包括两个步骤:(1) 利用一个区域建议网络,以自下而上的方式提出一小撮高质量的建议;(2) 将拟议区域的语义特征从拟议区域的语义特征调整和汇集起来,以总结RoI的表达方式,以便进一步完善。请注意,这些步骤2中的RoI-wise表示方式,在提供给检测头目时,被单独视为不相干条目。然而,我们观察到这些提议是由步骤1产生的,从地面真相中抵消,以某种方式出现,以潜在概率密集的当地社区为核心。如果一项提议主要为了协调而放弃边界信息,而现有网络则缺乏相应的信息补偿机制,则会出现挑战。在本文中,我们提议从点云中为3D对象检测提供$BDD$D。具体地说,我们没有像先前的工作那样独立地对每项提议进行修改,而是将每一项提议作为在特定分解阈值阈值阈值阈值内进行图形构建的节点。将本地社区探测仪图中的提议与一个明确探讨对象的边界关联。此外,我们设计了一个较轻的域域域域域域域级的域域域域域域域域域域域域域域域域域域域域标,我们使用了甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚的域域域域域域域域域域域域域域域域域域域域标,将利用。