Estimating depth information from endoscopic images is a prerequisite for a wide set of AI-assisted technologies, such as accurate localization and measurement of tumors, or identification of non-inspected areas. As the domain specificity of colonoscopies -- deformable low-texture environments with fluids, poor lighting conditions and abrupt sensor motions -- pose challenges to multi-view 3D reconstructions, single-view depth learning stands out as a promising line of research. Depth learning can be extended in a Bayesian setting, which enables continual learning, improves decision making and can be used to compute confidence intervals or quantify uncertainty for in-body measurements. In this paper, we explore for the first time Bayesian deep networks for single-view depth estimation in colonoscopies. Our specific contribution is two-fold: 1) an exhaustive analysis of scalable Bayesian networks for depth learning in different datasets, highlighting challenges and conclusions regarding synthetic-to-real domain changes and supervised vs. self-supervised methods; and 2) a novel teacher-student approach to deep depth learning that takes into account the teacher uncertainty.
翻译:从内窥镜图像中估计深度信息是一系列广泛的人工智能辅助技术的先决条件,如肿瘤的准确定位和测量,或确定未检查的区域。作为结肠镜的域特性 -- -- 流体、光亮条件差和感官突然移动的可变低质环境 -- -- 给多视角的3D重建带来挑战,单视深度学习是一个很有希望的研究线。深度学习可以在巴伊西亚环境中扩展,以便能够不断学习,改进决策,并可用于计算信心间隔或量化体内测量的不确定性。在本文件中,我们首次探索了巴伊西亚深度网络,以进行结肠镜的单视深度估计。我们的具体贡献有两个方面:1)对可扩展的海湾网络进行详尽分析,以便在不同的数据集中进行深度学习,突出合成到现实领域变化的挑战和结论,并监督到自我监督的方法;2)对深层学习采取新的教师研究方法,考虑到教师的不确定性。