To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation (TMLE) and double machine learning (DML). To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment (MCI). We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial.
翻译:为了估计因果关系,在健康环境中进行观察研究的分析人员采用几种战略来减轻由于指标的混淆而产生的偏见。有两大类方法用于这些目的:使用混乱者和工具变量(IV)。由于这些方法的特点是无法检验的假设,分析人员必须在一种不确定的范式下工作,这些方法将不完全发挥作用。在这个指导材料中,我们正式确定一套一般原则和超自然理论,用以在两种方法中估计因果关系,如果这些假设有可能被违反。这非常需要将观测研究过程重新确定为假设一种方法的估计数与另一种方法不相符的潜在假设情况。虽然我们围绕线性环境对方法进行的大多数讨论,但我们触及非线性环境的复杂性和灵活的程序,例如基于最低损失的估计和双机学习(DML)等目标。为了证明我们的原则的应用,我们调查在轻度认知缺陷时使用半点离标(MCI)的情况。我们比较和比较了传统和灵活方法与第四种方法的结果。我们的分析以及类似的观察研究和临床试验。