The goal of visual answering localization (VAL) in the video is to obtain a relevant and concise time clip from a video as the answer to the given natural language question. Early methods are based on the interaction modeling between video and text to predict the visual answer by the visual predictor. Later, using textual predictor with subtitles for the VAL proves to be more precise. However, these existing methods still have cross-modal knowledge deviations from visual frames or textual subtitles. In this paper, we propose a cross-modal mutual knowledge transfer span localization (MutualSL) method to reduce the knowledge deviation. MutualSL has both visual predictor and textual predictor, where we expect the prediction results of these both to be consistent, so as to promote semantic knowledge understanding between cross-modalities. On this basis, we design a one-way dynamic loss function to dynamically adjust the proportion of knowledge transferring. We have conducted extensive experiments on three public datasets for evaluation. The experimental results show that our method outperforms other competitive state-of-the-art (SOTA) methods, demonstrating its effectiveness.


翻译:视频中视觉解答本地化( VAL) 的目标是从视频中获取一个相关且简明的时间剪辑,作为给定自然语言问题的答案。 早期方法基于视频和文本之间的互动模型, 以预测视觉预测器的视觉解答。 稍后, 使用文本预测器, 配有VAL字幕更精确。 但是, 这些现有方法仍然具有与视觉框架或文字字幕的交互模式知识偏差。 在本文中, 我们提议了一种跨模式的跨本地化( MutualSL) 方法, 以减少知识偏差。 共同语言法有视觉预测器和文本预测器, 我们期望两者的预测结果一致, 从而推动跨模式之间的语义知识理解。 在此基础上, 我们设计了单向动态丧失功能, 以动态地调整知识传输的比例。 我们在三个用于评估的公共数据集上进行了广泛的实验。 实验结果显示, 我们的方法比其他竞争性的艺术( SOTA) 方法要好, 以显示其有效性。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
15+阅读 · 2021年11月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员