The goal of visual answering localization (VAL) in the video is to obtain a relevant and concise time clip from a video as the answer to the given natural language question. Early methods are based on the interaction modeling between video and text to predict the visual answer by the visual predictor. Later, using textual predictor with subtitles for the VAL proves to be more precise. However, these existing methods still have cross-modal knowledge deviations from visual frames or textual subtitles. In this paper, we propose a cross-modal mutual knowledge transfer span localization (MutualSL) method to reduce the knowledge deviation. MutualSL has both visual predictor and textual predictor, where we expect the prediction results of these both to be consistent, so as to promote semantic knowledge understanding between cross-modalities. On this basis, we design a one-way dynamic loss function to dynamically adjust the proportion of knowledge transferring. We have conducted extensive experiments on three public datasets for evaluation. The experimental results show that our method outperforms other competitive state-of-the-art (SOTA) methods, demonstrating its effectiveness.
翻译:视频中视觉解答本地化( VAL) 的目标是从视频中获取一个相关且简明的时间剪辑,作为给定自然语言问题的答案。 早期方法基于视频和文本之间的互动模型, 以预测视觉预测器的视觉解答。 稍后, 使用文本预测器, 配有VAL字幕更精确。 但是, 这些现有方法仍然具有与视觉框架或文字字幕的交互模式知识偏差。 在本文中, 我们提议了一种跨模式的跨本地化( MutualSL) 方法, 以减少知识偏差。 共同语言法有视觉预测器和文本预测器, 我们期望两者的预测结果一致, 从而推动跨模式之间的语义知识理解。 在此基础上, 我们设计了单向动态丧失功能, 以动态地调整知识传输的比例。 我们在三个用于评估的公共数据集上进行了广泛的实验。 实验结果显示, 我们的方法比其他竞争性的艺术( SOTA) 方法要好, 以显示其有效性。