Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose a contrastive affinity learning stage to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced prompt supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (with nearly $11\%$ gain on CUB-200, and $9\%$ on ImageNet-100) on overall accuracy.
翻译:虽然现有的半监督的学习模式在学习无附加说明的分布数据方面取得了显著的成功,但大多数模式由于闭塞的假设,无法从新型语义类中抽样的无标签数据中学习。在这项工作中,我们的目标是一个实用的、但探索不足的通用新颖分类发现(GNCD)设置。GNCD设置的目的是利用部分标签已知阶级的信息,对来自已知和新类的无标签培训数据进行分类。我们提出一个两阶段的对比性亲近性学习方法,用被称为JerCAL的辅助视觉提示来应对这一具有挑战性的问题。我们的方法发现了可靠的双对口样本,以更好地学习已知和新颖类的语系组合,用于课堂象征性和视觉提示。首先,我们提出有区别性的即时调整损失,以强化通过事先经过训练的视觉变异性变异性变异器来改善部分标签已知阶级的关系。此外,我们提议一个对比性亲近性学习阶段,以校正基于我们反复的半监督半监督性精度的精度精度精度精度精度精度精度精度的精度精度精度精度精度的精度和直度直度的直度直度的直度图度的直度的直度,即性直度的直度的直度的直度的直度的直度直度直度直度图度图解微的精确度直度直度分析的直度图的直度图的直度的直度分析方法展示的精确度,展示的精确度分析方法展示的精确度,展示的直度的直度的直度的直度的直度的直度直度直度直度的直度的直度直度直度直度直度直度直度直度直度分析方法展示了的直度直度直度的直度的直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度的直度直度的直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度直度的直度