There exists a large number of datasets for organ segmentation, which are partially annotated, and sequentially constructed. A typical dataset is constructed at a certain time by curating medical images and annotating the organs of interest. In other words, new datasets with annotations of new organ categories are built over time. To unleash the potential behind these partially labeled, sequentially-constructed datasets, we propose to learn a multi-organ segmentation model through incremental learning (IL). In each IL stage, we lose access to the previous annotations, whose knowledge is assumingly captured by the current model, and gain the access to a new dataset with annotations of new organ categories, from which we learn to update the organ segmentation model to include the new organs. We give the first attempt to conjecture that the different distribution is the key reason for 'catastrophic forgetting' that commonly exists in IL methods, and verify that IL has the natural adaptability to medical image scenarios. Extensive experiments on five open-sourced datasets are conducted to prove the effectiveness of our method and the conjecture mentioned above.


翻译:存在大量器官分解数据集,这些数据集部分是附加说明的,并按顺序构建。典型的数据集是在某个时候通过分析医学图像和说明感兴趣的器官来构建的。换句话说,新数据集加上新器官类别的说明是随着时间的推移而构建的。为了释放这些部分标签的、按顺序构建的数据集背后的潜力,我们提议通过渐进学习来学习一个多器官分解模型。在每一个IL阶段,我们失去了对前一个说明的存取,而该说明的知识被目前的模型假定捕获,并获得新器官类别说明的新数据集的存取,从中我们学会更新器官分解模型以包括新的器官。我们第一次试图推断,不同的分布是“催化性遗忘”的主要原因,而IL方法中通常存在这种“催化性遗忘”的关键原因,并核实IL具有对医学图像情景的自然适应性。在五个开源数据集上进行了广泛的实验,以证明我们的方法的有效性和上述的推测。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员