Pooling methods are necessities for modern neural networks for increasing receptive fields and lowering down computational costs. However, commonly used hand-crafted pooling approaches, e.g., max pooling and average pooling, may not well preserve discriminative features. While many researchers have elaborately designed various pooling variants in spatial domain to handle these limitations with much progress, the temporal aspect is rarely visited where directly applying hand-crafted methods or these specialized spatial variants may not be optimal. In this paper, we derive temporal lift pooling (TLP) from the Lifting Scheme in signal processing to intelligently downsample features of different temporal hierarchies. The Lifting Scheme factorizes input signals into various sub-bands with different frequency, which can be viewed as different temporal movement patterns. Our TLP is a three-stage procedure, which performs signal decomposition, component weighting and information fusion to generate a refined downsized feature map. We select a typical temporal task with long sequences, i.e. continuous sign language recognition (CSLR), as our testbed to verify the effectiveness of TLP. Experiments on two large-scale datasets show TLP outperforms hand-crafted methods and specialized spatial variants by a large margin (1.5%) with similar computational overhead. As a robust feature extractor, TLP exhibits great generalizability upon multiple backbones on various datasets and achieves new state-of-the-art results on two large-scale CSLR datasets. Visualizations further demonstrate the mechanism of TLP in correcting gloss borders. Code is released.
翻译:集合方法是现代神经网络增加可接受字段和降低计算成本的必要条件。然而,通常使用的手工制作的集合方法,如最大集合和平均集合等,可能无法保存区别性特征。虽然许多研究人员在空间领域精心设计了各种集合变体,以便处理这些限制,但很少在直接应用手工制作方法或这些专门空间变体可能不是最佳的地方访问时间方面。在本文中,我们从信号处理中从升降计划获得临时升降集合(TLP),以智能地向下降不同时空等级结构的特征。启动计划将输入信号以不同频率纳入各种子带,这可以被视为不同的时间移动模式。我们的TLP是一个三阶段程序,直接使用信号分解、组件加权和信息混集,以产生更精确的地貌地图地图。我们选择了一个具有长序列的典型时间任务,即持续签名语言识别(CLRR),作为我们的测试台,用于核实TLP的智能降级特征。在两个大型的S-Sloverial Seral Seral Seral 上,在两个大型的高级数据模型模型上,在两个大型的大型的基流模型上进行实验,在两个大型的大型的基底压模型上,在两个大型的模型上,在大型的模型上,在大型的模型上,在大型的模型上,在大型的基底压LLLS-S-al-al-al-al-al-al-al-s-s-al-al-ladal-al-al-al-al-al-ladal-ladal-dal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-s-s-al-al-al-al-al-al-s-al-al-al-s-s-s-al-al-al-al-al-al-al-al-al-al-ldal-al-al-al-al-al-al-al-al-al-ld-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-