Continual Learning aims to learn multiple incoming new tasks continually, and to keep the performance of learned tasks at a consistent level. However, existing research on continual learning assumes the pose of the object is pre-defined and well-aligned. For practical application, this work focuses on pose-agnostic continual learning tasks, where the object's pose changes dynamically and unpredictably. The point cloud augmentation adopted from past approaches would sharply rise with the task increment in the continual learning process. To address this problem, we inject the equivariance as the additional prior knowledge into the networks. We proposed a novel continual learning model that effectively distillates previous tasks' geometric equivariance information. The experiments show that our method overcomes the challenge of pose-agnostic scenarios in several mainstream point cloud datasets. We further conduct ablation studies to evaluate the validation of each component of our approach.
翻译:持续学习的目的是不断学习新的多重任务,并将学习任务的业绩保持在一致的水平上。然而,现有的持续学习研究假设了该对象的外形是预先定义的,并且非常吻合的。为了实际应用,这项工作侧重于该对象的外形不可知的连续学习任务,即该对象的外形持续学习任务会以动态和不可预测的方式带来变化。从过去的方法中采用的点云增益会随着持续学习过程中的任务增加而急剧上升。为了解决这个问题,我们把差值作为先前的额外知识输入网络。我们提出了一个新的持续学习模式,有效地将先前的任务的几何等同性信息蒸馏出来。实验表明,我们的方法克服了几个主流云数据集中出现外形不可知性情景的挑战。我们进一步进行模拟研究,以评价我们方法的每个组成部分的验证情况。