Purpose: Bronchoscopic intervention is a widely-used clinical technique for pulmonary diseases, which requires an accurate and topological complete airway map for its localization and guidance. The airway map could be extracted from chest computed tomography (CT) scans automatically by airway segmentation methods. Due to the complex tree-like structure of the airway, preserving its topology completeness while maintaining the segmentation accuracy is a challenging task. Methods: In this paper, a long-term slice propagation (LTSP) method is proposed for accurate airway segmentation from pathological CT scans. We also design a two-stage end-to-end segmentation framework utilizing the LTSP method in the decoding process. Stage 1 is used to generate a coarse feature map by an encoder-decoder architecture. Stage 2 is to adopt the proposed LTSP method for exploiting the continuity information and enhancing the weak airway features in the coarse feature map. The final segmentation result is predicted from the refined feature map. Results: Extensive experiments were conducted to evaluate the performance of the proposed method on 70 clinical CT scans. The results demonstrate the considerable improvements of the proposed method compared to some state-of-the-art methods as most breakages are eliminated and more tiny bronchi are detected. The ablation studies further confirm the effectiveness of the constituents of the proposed method. Conclusion: Slice continuity information is beneficial to accurate airway segmentation. Furthermore, by propagating the long-term slice feature, the airway topology connectivity is preserved with overall segmentation accuracy maintained.


翻译:目标: 布朗乔斯古片干预是一种广泛使用的肺病临床技术,它需要准确和地形完整的空气路径图,以便其本地化和指导。 气道图可以通过空气路分割法自动从胸部计算断层仪(CT)扫描中提取。 由于空气路结构复杂,保持其地形完整性,同时保持分层准确性是一项艰巨的任务。 方法 : 在本文件中, 提出了一种长期切片传播(LTSP)方法, 以便从病理CT扫描中准确分解空气路段。 我们还设计了一个两阶段端至端截断层框架, 在解码过程中使用 LTSP 方法。 第一阶段用于通过编码器解码结构生成粗略的特征图。 第二阶段将采用拟议的 LTSP 方法, 利用连续性信息, 提高粗略地特征图中的空气路段特征。 最后的分解结果由精细的地谱图预测。 结果: 进行了广泛的实验,以评价拟议的70 临床CT 端端至端截断段总路段分层路段的准确性结构结构框架。 第一阶段使用一种相当的精确性的研究结果, 以Screcial- smal- decalcalation法进行较精确的精确的精确性观测。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
13+阅读 · 2019年11月14日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员