Crowd counting is a challenging task due to the heavy occlusions, scales, and density variations. Existing methods handle these challenges effectively while ignoring low-resolution (LR) circumstances. The LR circumstances weaken the counting performance deeply for two crucial reasons: 1) limited detail information; 2) overlapping head regions accumulate in density maps and result in extreme ground-truth values. An intuitive solution is to employ super-resolution (SR) pre-processes for the input LR images. However, it complicates the inference steps and thus limits application potentials when requiring real-time. We propose a more elegant method termed Multi-Scale Super-Resolution Module (MSSRM). It guides the network to estimate the lost de tails and enhances the detailed information in the feature space. Noteworthy that the MSSRM is plug-in plug-out and deals with the LR problems with no inference cost. As the proposed method requires SR labels, we further propose a Super-Resolution Crowd Counting dataset (SR-Crowd). Extensive experiments on three datasets demonstrate the superiority of our method. The code will be available at https://github.com/PRIS-CV/MSSRM.git.
翻译:现有方法在忽视低分辨率(LR)情况的同时有效地处理这些挑战,而忽略低分辨率(LR)情况。LR环境使计数的性能大大削弱,原因有两个:(1) 细节信息有限;(2) 密度图中出现重叠头区域,导致极端地面真实值。一个直觉的解决方案是为输入LR图像采用超分辨率(SR)预处理程序。然而,它使推断步骤复杂化,从而在需要实时时限制了应用潜力。我们提议了一个更优雅的方法,称为多度超级分辨率模块(MSSRM)。它指导网络估计丢失的尾巴,加强特性空间的详细信息。值得注意的是,MSSRM是插座,处理LR问题,没有推断成本。由于拟议的方法需要SR标签,我们进一步提议一个超级分辨率的人群计数数据集(SR-Crowd)。关于三种数据集的广泛实验显示了我们的方法的优越性。代码将在 https/MGI/SR. 提供 https/MGI/SR.</s>