Standard photoacoustic tomography (PAT) provides data that consist of time-dependent signals governed by the wave equation, which are measured on an observation surface. In contrast, the measured data from the recently invented full-field PAT is the Radon transform of the solution of the wave equation on a spatial domain at a single instant in time. While reconstruction using classical PAT data has been extensively studied, not much is known about the full-field PAT problem. In this paper, we study full-field photoacoustic tomography with spatially variable sound speed and spatially variable damping. In particular, we prove the uniqueness and stability of the associated single-time full-field wave inversion problem and develop algorithms for its numerical inversion using iterative and variational regularization methods. Numerical simulations are presented for both full-angle and limited-angle data cases
翻译:暂无翻译