项目名称: 无界区域问题基于有限体积格式的DtN型区域分解方法
项目编号: No.11201209
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 杨菊娥
作者单位: 兰州大学
项目金额: 22万元
中文摘要: 随着并行计算机和并行算法的迅速发展,区域分解算法正成为解决具有复杂区 域和复杂过程的现实问题的强有力的工具。本项目将区域分解方法和自然边界元方法结合起 来求解无界区域的线性、非线性扩散问题,利用有限体积法和自然边界元法各自的优点,研 究Dirichlet-Neumann 型区域分解算法(DtN 算法)和相应的非匹配网格的界面算法以及离 散方程组的预条件算法。本项目的研究首次将基于自然边界归化的区域分解方法推广到有限 体积格式,具有非常广泛的应用前景,尤其是在计算流体和传热问题领域;相应的非匹配网 格算法具有网格剖分灵活,子区域计算独立等优点,在保持一定精度的基础上可以减少计算 量,节省计算时间,实现算法层面上高效并行的目标;离散方程组预条件子的构造有望解决 扩散方程组计算耗时的瓶颈;总之,本项目的研究将为无界区域工程计算相关数值模拟提供 一种高效、可靠的数值计算方法。
中文关键词: 无界区域;自然边界归化;超奇异积分;超收敛;区域分解
英文摘要: With the fast development of parallel computer and parallel algorithm, the domain decomposition method is becoming a powerful tool to solve the practical problems with complicated domains or complicated processes. This project combine the domain decomposition method with natural boundary element method to solve some linear and nonlinear diffusion problems on unbounded domains. Using the respective advantages of the finite volume method and the natural boundary element method, we propose a kind of domain decomposition algorithm with the Dirichlet-Neumann boundary condition (DtN algorithm)and the corresponding interface algorithm with nonmatching grids and the construction of the preconditioner for the discrete equations. The research of this project first extend the domain decomposition method(DDM) based on the natural boundary reduction to the finite volume discretization, then it has potential applications in many fields, especially for fluid computation and heat conduction; The corresponding algorithm of nonmatching grids has some advantages such as the flexibility of mesh generation and the independence of the computations in each subdomain. So, this method can reduce the amount of calculations and calculating time without loosing accurary. Finally,we can realize the aim of algorithm's high efficiency and par
英文关键词: unbounded domain;natural boundary reduction;hypersingular integral;superconvergence;domain decomposition