The design of optimal auctions is a problem of interest in economics, game theory and computer science. Despite decades of effort, strategyproof, revenue-maximizing auction designs are still not known outside of restricted settings. However, recent methods using deep learning have shown some success in approximating optimal auctions, recovering several known solutions and outperforming strong baselines when optimal auctions are not known. In addition to maximizing revenue, auction mechanisms may also seek to encourage socially desirable constraints such as allocation fairness or diversity. However, these philosophical notions neither have standardization nor do they have widely accepted formal definitions. In this paper, we propose PreferenceNet, an extension of existing neural-network-based auction mechanisms to encode constraints using (potentially human-provided) exemplars of desirable allocations. In addition, we introduce a new metric to evaluate an auction allocations' adherence to such socially desirable constraints and demonstrate that our proposed method is competitive with current state-of-the-art neural-network based auction designs. We validate our approach through human subject research and show that we are able to effectively capture real human preferences. Our code is available at https://github.com/neeharperi/PreferenceNet


翻译:最佳拍卖的设计是经济学、游戏理论和计算机科学中一个令人感兴趣的问题。尽管作出了数十年的努力,但是在受限制的环境之外仍无法了解战略、收入最大化的拍卖设计。然而,最近采用深层学习的方法在接近最佳拍卖、恢复若干已知解决办法和在最佳拍卖尚不为人知的情况下优劣基线方面取得了一定的成功。除了最大限度地增加收入外,拍卖机制还可能寻求鼓励诸如分配公平或多样性等社会上可取的制约因素。然而,这些哲学概念既没有标准化,也没有被广泛接受的正式定义。在本文件中,我们提议建立参考网,扩大现有的基于神经网络的拍卖机制,以便使用(可能由人提供的)适当分配的样本对限制进行编码。此外,我们还采用新的指标来评价拍卖分配是否遵守了这种可取的社会限制,并表明我们所提议的方法与目前以最新工艺型的神经网络为基础的拍卖设计具有竞争力。我们通过人类主题研究验证了我们的方法,并表明我们能够有效地捕捉到真正的人类偏好。我们的代码可在https://github/ com/neperperireforence查阅。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
8+阅读 · 2020年10月7日
Arxiv
5+阅读 · 2020年8月28日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员