Learning the dynamics of spatiotemporal events is a fundamental problem. Neural point processes enhance the expressivity of point process models with deep neural networks. However, most existing methods only consider temporal dynamics without spatial modeling. We propose Deep Spatiotemporal Point Process (DeepSTPP), a deep dynamics model that integrates spatiotemporal point processes. Our method is flexible, efficient, and can accurately forecast irregularly sampled events over space and time. The key construction of our approach is the nonparametric space-time intensity function, governed by a latent process. The intensity function enjoys closed-form integration for the density. The latent process captures the uncertainty of the event sequence. We use amortized variational inference to infer the latent process with deep networks. Using synthetic datasets, we validate our model can accurately learn the true intensity function. On real-world benchmark datasets, our model demonstrates superior performance over state-of-the-art baselines.


翻译:学习时空事件的动态是一个根本问题。 神经点过程会通过深神经网络增强点进程模型的表达性。 然而, 大多数现有方法只考虑时间动态而不进行空间建模。 我们提议深空间时空进程( EepSTPP) 。 我们提出深空间时点进程( Deep Spatotoental Point process (DepSTP) ) 。 我们的方法灵活、高效,并且可以准确预测空间和时间的不定期抽样事件。 我们方法的关键构建是非参数空间时空强度功能, 受潜伏过程的制约。 强度功能享有密度的封闭式集成功能。 潜在过程捕捉事件序列的不确定性。 我们使用分解变异推论来推断深网络的潜伏进程。 我们使用合成数据集验证我们的模型可以准确了解真实的强度函数。 在现实世界的基准数据集中, 我们的模型显示比最先进的基线的性强。

1
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员