We establish a new connection between moments of $n \times n$ random matrices $X_n$ and hypergeometric orthogonal polynomials. Specifically, we consider moments $\mathbb{E}\mathrm{Tr} X_n^{-s}$ as a function of the complex variable $s \in \mathbb{C}$, whose analytic structure we describe completely. We discover several remarkable features, including a reflection symmetry (or functional equation), zeros on a critical line in the complex plane, and orthogonality relations. An application of the theory resolves part of an integrality conjecture of Cunden et al. [F. D. Cunden, F. Mezzadri, N. J. Simm and P. Vivo, J. Math. Phys. 57 (2016)] on the time-delay matrix of chaotic cavities. In each of the classical ensembles of random matrix theory (Gaussian, Laguerre, Jacobi) we characterise the moments in terms of the Askey scheme of hypergeometric orthogonal polynomials. We also calculate the leading order $n\to\infty$ asymptotics of the moments and discuss their symmetries and zeroes. We discuss aspects of these phenomena beyond the random matrix setting, including the Mellin transform of products and Wronskians of pairs of classical orthogonal polynomials. When the random matrix model has orthogonal or symplectic symmetry, we obtain a new duality formula relating their moments to hypergeometric orthogonal polynomials.
翻译:我们完全描述其分析结构。 我们发现了一些显著的特征, 包括反射对称( 或功能方程 ) 、 复杂平面上的关键直线上的零和正方位关系。 具体地说, 我们将时点视为复杂变量 $s 的函数, 也就是我们完整描述的解析结构 。 我们发现了一些显著的特征, 包括反射对称( 或功能方程 ) 、 复杂平面上的关键直线上的零和正方位关系。 该理论的应用解决了Cunden et al. [F. Cunden, F. Mezzadri, N. J. Simmm和 P. Vivo, J. Math. Phys. 57-2015] 整体的集成性洞穴中一个整体性洞穴中的一部分。 当我们用理论解决Cunden etal etrial 和 等离子阵列的直径直径直径直线线线线线线线的内线性洞洞测时, 也从这些直径直径直径直径解的极基体的极基体的基体中, 或直径直径基质的基质地讨论。