How many neurons are needed to approximate a target probability distribution using a neural network with a given input distribution and approximation error? This paper examines this question for the case when the input distribution is uniform, and the target distribution belongs to the class of histogram distributions. We obtain a new upper bound on the number of required neurons, which is strictly better than previously existing upper bounds. The key ingredient in this improvement is an efficient construction of the neural nets representing piecewise linear functions. We also obtain a lower bound on the minimum number of neurons needed to approximate the histogram distributions.
翻译:需要多少个神经元来使用神经网络以特定输入分布和近似误差来估计目标概率分布? 本文审视了输入分布统一时的这一问题, 目标分布属于直方图分布类别。 我们获得了所需的神经元数量的新上限, 这比以前已有的上限要好。 改进的关键成分是高效地构建神经网, 代表细线函数。 我们还获得了接近直方图分布所需的最小神经元数量的更低约束值 。