In this paper, we show that the approximation for distributions by Wasserstein GAN depends on both the width/depth (capacity) of generators and discriminators, as well as the number of samples in training. A quantified generalization bound is developed for Wasserstein distance between the generated distribution and the target distribution. It implies that with sufficient training samples, for generators and discriminators with proper number of width and depth, the learned Wasserstein GAN can approximate distributions well. We discover that discriminators suffer a lot from the curse of dimensionality, meaning that GANs have higher requirement for the capacity of discriminators than generators, which is consistent with the theory in arXiv:1703.00573v5 [cs.LG]. More importantly, overly deep (high capacity) generators may cause worse results (after training) than low capacity generators if discriminators are not strong enough. Different from Wasserstein GAN in arXiv:1701.07875v3 [stat.ML], we adopt GroupSort neural networks arXiv:1811.05381v2 [cs.LG] in the model for their better approximation to 1-Lipschitz functions. Compared to some existing generalization (convergence) analysis of GANs, we expect our work are more applicable.


翻译:在本文中,我们表明,瓦西尔斯坦GAN的分布近似值取决于发电机和导体的宽度/深度(能力)以及培训中的样本数量。为瓦西尔斯坦的分布与目标分布之间的距离制定了量化的通用约束。这意味着,如果有足够的培训样本,对于具有适当宽度和深度的发电机和导体,学得的瓦西尔斯坦GAN可以很好地接近分布。我们发现,歧视者在维度的诅咒下深受歧视之害,这意味着GAN对歧视者的能力的要求高于发电机的能力,这与ArXiv:1703.00573v5 [cs.LG]中的理论是一致的。更重要的是,如果歧视者不够强大,过深(能力)的发电机可能会比低能力生成者产生更差的结果(经过培训后)。不同于Arxiv:1701.07875v3[stat.ML]中的WasserrXiv:1811.05381[csverLlp]现有神经网络对改进了我们的DNA工作模型的预期。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《生成式对抗网络数学导论》,30页pdf
专知会员服务
78+阅读 · 2020年9月3日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
提高GAN训练稳定性的9大tricks
人工智能前沿讲习班
13+阅读 · 2019年3月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关资讯
提高GAN训练稳定性的9大tricks
人工智能前沿讲习班
13+阅读 · 2019年3月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员