In the RoboCup Small Size League (SSL), teams are encouraged to propose solutions for executing basic soccer tasks inside the SSL field using only embedded sensing information. Thus, this work proposes an embedded monocular vision approach for detecting objects and estimating relative positions inside the soccer field. Prior knowledge from the environment is exploited by assuming objects lay on the ground, and the onboard camera has its position fixed on the robot. We implemented the proposed method on an NVIDIA Jetson Nano and employed SSD MobileNet v2 for 2D Object Detection with TensorRT optimization, detecting balls, robots, and goals with distances up to 3.5 meters. Ball localization evaluation shows that the proposed solution overcomes the currently used SSL vision system for positions closer than 1 meter to the onboard camera with a Root Mean Square Error of 14.37 millimeters. In addition, the proposed method achieves real-time performance with an average processing speed of 30 frames per second.
翻译:在机器人小型联盟(SSL)中,鼓励各团队提出解决方案,仅使用嵌入式遥感信息,在SSL田内执行基本足球任务,因此,这项工作提议采用嵌入式单视法探测物体和估计足球田内相对位置;利用先前的环境知识,假设物体埋在地面,机上摄像头的位置固定在机器人上;我们在NVIDIAA Jetson Nano上采用了拟议方法,并使用SSD移动网络 v2进行2D物体探测,优化TensorRT、探测球、机器人和距离达3.5米的目标;Ball本地化评估显示,拟议的解决方案克服了目前使用的SSL在距离离机上摄像头1米以上的位置上使用的SSL视觉系统,而根平方平方差错误为14.37毫米;此外,拟议方法实现了实时性工作,平均处理速度为每秒30个框架。