We consider global problems, i.e. problems that take at least diameter time, even when the bandwidth is not restricted. We show that all problems considered admit efficient solutions in low-treewidth graphs. By ``efficient'' we mean that the running time has polynomial dependence on the treewidth, a linear dependence on the diameter (which is unavoidable), and only a polylogarithmic dependence on $n$, the number of nodes in the graph. We present the algorithms solving the following problems in the CONGEST model which all attain $\tilde{O(\tau^{O(1)}D)}$-round complexity (where $\tau$ and $D$ denote the treewidth and diameter of the graph, respectively): (1) Exact single-source shortest paths (actually, the more general problem of computing a distance labeling scheme) for weighted and directed graphs, (2) exact bipartite unweighted maximum matching, and (3) the weighted girth for both directed and undirected graphs. We derive all of our results using a single unified framework, which consists of two novel technical ingredients, The first is a fully polynomial-time distributed tree decomposition algorithm, which outputs a decomposition of width $O(\tau^2\log n)$ in $\tilde{O}(\tau^{O(1)}D)$ rounds (where $n$ is the number of nodes in the graph). The second ingredient, and the technical highlight of this paper, is the novel concept of a \emph{stateful walk constraint}, which naturally defines a set of feasible walks in the input graph based on their local properties (e.g., augmenting paths). Given a stateful walk constraint, the constrained version of the shortest paths problem (or distance labeling) requires the algorithm to output the shortest \emph{constrained} walk (or its distance) for a given source and sink vertices. We show that this problem can be efficiently solved in the CONGEST model by reducing it to an \emph{unconstrained} version of the problem.


翻译:我们考虑的是全球性问题,即至少需要直径时间的问题,即使带宽不受限制。我们显示所有问题都被认为承认低树枝图形中的有效解决方案。“效率'”是指运行时间对树枝图有多元依赖性,对直径有线性依赖(这是不可避免的),只有多式依赖美元,图中节点的数量。我们展示的是解决CONEST模型中以下问题的算法,所有这些模型都达到$tilde{O(tau}O)O(美元)O(美元)O(美元)O(美元)O(美元)D)}美元(美元))) 美元周期复杂性(美元) 美元(美元) 数字(美元) 运行时间(美元) 运行时间(美元) 运行时间(美元) 数字(美元) 数字(美元) 数字(美元) 数字(美元) 数字(美元) 数字(美元) 数字(美元) 数字(我们用一个单一的统一框架来计算我们所有的结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
0+阅读 · 2022年7月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员