We prove that the combinatorial Weisfeiler-Leman algorithm of dimension $(3k+4)$ is a complete isomorphism test for the class of all graphs of rank width at most $k$. Rank width is a graph invariant that, similarly to tree width, measures the width of a certain style of hierarchical decomposition of graphs; it is equivalent to clique width. It was known that isomorphism of graphs of rank width $k$ is decidable in polynomial time (Grohe and Schweitzer, FOCS 2015), but the best previously known algorithm has a running time $n^{f(k)}$ for a non-elementary function $f$. Our result yields an isomorphism test for graphs of rank width $k$ running in time $n^{O(k)}$. Another consequence of our result is the first polynomial time canonisation algorithm for graphs of bounded rank width. Our second main result is that fixed-point logic with counting captures polynomial time on all graph classes of bounded rank width.
翻译:我们证明维维( 3k+ 4) 的维维( Weisfeiler- Leman) 算法是一个完整的等式测试, 以美元计值宽度, 以美元计值。 级宽度是一张像树宽度一样测量图表等级分解类型宽度的图形图形图形; 等值宽度等值的宽度。 我们知道, 等宽 $k$ 的图形形形形图形形形形色在多元时( Grohe 和 Schweitzer, FOCS 2015) 中是可以分辨的, 但已知的最佳算法是运行时间 $n ⁇ f( k) $的非元素函数值。 我们的结果是, 等宽度的平面图形图形形形形形形形形形形形色形色形形色的图形形形形色宽度为$n ⁇ 值测试。 我们的结果是, 结界的图形色色宽度图图图形形形形形图的第一次多波段时间化算算算算法。