Since the seminal PPAD-completeness result for computing a Nash equilibrium even in two-player games, an important line of research has focused on relaxations achievable in polynomial time. In this paper, we consider the notion of $\varepsilon$-well-supported Nash equilibrium, where $\varepsilon \in [0,1]$ corresponds to the approximation guarantee. Put simply, in an $\varepsilon$-well-supported equilibrium, every player chooses with positive probability actions that are within $\varepsilon$ of the maximum achievable payoff, against the other player's strategy. Ever since the initial approximation guarantee of 2/3 for well-supported equilibria, which was established more than a decade ago, the progress on this problem has been extremely slow and incremental. Notably, the small improvements to 0.6608, and finally to 0.6528, were achieved by algorithms of growing complexity. Our main result is a simple and intuitive algorithm, that improves the approximation guarantee to 1/2. Our algorithm is based on linear programming and in particular on exploiting suitably defined zero-sum games that arise from the payoff matrices of the two players. As a byproduct, we show how to achieve the same approximation guarantee in a query-efficient way.


翻译:即使在双人游戏中,计算纳什平衡的创性 PPAD 完全性结果( 即使在双人游戏中), 也是一个重要的研究线。 在本文中, 我们考虑的是 $\ varepsilon$- well- supported Nash salance 的理念, $\ varepsilon $@ in [ 0,1] 与近似保证相对应。 简单地说, 在 $\ varepsilon$- well- countive的平衡中, 每个玩家选择的正面概率动作, 是在最高可实现的回报范围内, 而不是在另一玩家的战略下。 自从10多年前建立的支持良好的equilibria 2/3 初步近似保证以来, 这个问题的进展非常缓慢和渐进。 值得注意的是, 0. 0. 6608 和 0. 6528 小的改进是通过日益复杂的算法实现的。 我们的主要结果是简单和直观的算法, 将近似保证提高到1/2。 我们的算法是基于线线线线性编程, 并特别基于利用于正确定义的零和节率的游戏, 我们的算方法, 从一个保证的游戏, 向着工资矩阵, 通过一个相同的方向显示。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员