Most existing text-video retrieval methods focus on cross-modal matching between the visual content of offline videos and textual query sentences. However, in real scenarios, online videos are frequently accompanied by relevant text information such as titles, tags, and even subtitles, which can be utilized to match textual queries. This inspires us to generate associated captions from offline videos to help with existing text-video retrieval methods. To do so, we propose to use the zero-shot video captioner with knowledge of pre-trained web-scale models (e.g., CLIP and GPT-2) to generate captions for offline videos without any training. Given the captions, one question naturally arises: what can auxiliary captions do for text-video retrieval? In this paper, we present a novel framework Cap4Video, which makes use of captions from three aspects: i) Input data: The video and captions can form new video-caption pairs as data augmentation for training. ii) Feature interaction: We perform feature interaction between video and caption to yield enhanced video representations. iii) Output score: The Query-Caption matching branch can be complementary to the original Query-Video matching branch for text-video retrieval. We conduct thorough ablation studies to demonstrate the effectiveness of our method. Without any post-processing, our Cap4Video achieves state-of-the-art performance on MSR-VTT (51.4%), VATEX (66.6%), MSVD (51.8%), and DiDeMo (52.0%).
翻译:多数现有的文本视频检索方法侧重于离线视频和文本查询句的视觉内容之间的跨模式匹配。然而,在真实情况下,在线视频经常伴有标题、标签甚至字幕等相关文本信息,可用于匹配文本查询。这激励我们从离线视频生成相关标题,以帮助现有文本视频检索方法。为此,我们提议使用了解预先培训的网络规模模型(例如,CLIP和GPT-2)的零光视频字幕,为离线视频生成说明,而无需任何培训。鉴于标题,自然会出现一个问题:对文本视频检索来说,辅助标题可以做什么?在本文件中,我们提出了一个新的框架Cap4Video,它利用现有文本视频视频检索方法。输入数据:视频和字幕可以形成新的视频字幕配对,作为培训的数据增强。 (二) 功能互动:我们在视频和字幕之间进行特征互动,可以产生强化的视频演示。 3) 输出分分数:无视频视频视频检索到我们原始版本的文本检索方法。