Generative artificial intelligence (GenAI) offers new possibilities for generating personalized programming exercises, addressing the need for individual practice. However, the task quality along with the student perspective on such generated tasks remains largely unexplored. Therefore, this paper introduces and evaluates a new feature of the so-called Tutor Kai for generating comprehensive programming tasks, including problem descriptions, code skeletons, unit tests, and model solutions. The presented system allows students to freely choose programming concepts and contextual themes for their tasks. To evaluate the system, we conducted a two-phase mixed-methods study comprising (1) an expert rating of 200 automatically generated programming tasks w.r.t. task quality, and (2) a study with 26 computer science students who solved and rated the personalized programming tasks. Results show that experts classified 89.5% of the generated tasks as functional and 92.5% as solvable. However, the system's rate for implementing all requested programming concepts decreased from 94% for single-concept tasks to 40% for tasks addressing three concepts. The student evaluation further revealed high satisfaction with the personalization. Students also reported perceived benefits for learning. The results imply that the new feature has the potential to offer students individual tasks aligned with their context and need for exercise. Tool developers, educators, and, above all, students can benefit from these insights and the system itself.
翻译:暂无翻译