Yaw misalignment, measured as the difference between the wind direction and the nacelle position of a wind turbine, has consequences on the power output, the safety and the lifetime of the turbine and its wind park as a whole. We use reinforcement learning to develop a yaw control agent to minimise yaw misalignment and optimally reallocate yaw resources, prioritising high-speed segments, while keeping yaw usage low. To achieve this, we carefully crafted and tested the reward metric to trade-off yaw usage versus yaw alignment (as proportional to power production), and created a novel simulator (environment) based on real-world wind logs obtained from a REpower MM82 2MW turbine. The resulting algorithm decreased the yaw misalignment by 5.5% and 11.2% on two simulations of 2.7 hours each, compared to the conventional active yaw control algorithm. The average net energy gain obtained was 0.31% and 0.33% respectively, compared to the traditional yaw control algorithm. On a single 2MW turbine, this amounts to a 1.5k-2.5k euros annual gain, which sums up to very significant profits over an entire wind park.


翻译:偏航不准是风力涡轮机中衡量风向与散热罩位置之间差异的重要参数,会影响功率输出、安全和涡轮机及其整个风力发电场寿命。我们使用强化学习开发了一个偏航控制代理,以最小化偏航不准和最优地重新分配偏航资源,优先考虑高速段,同时保持偏航使用率低。为了实现这一目标,我们仔细地构建并测试了奖励指标,以权衡偏航使用与偏航对准(与发电量成正比),并创建了一个基于来自一台REpower MM82 2MW涡轮机的真实风日志的新模拟器(环境)。与传统的主动偏航控制算法相比,得到的算法在两个分别为2.7小时的模拟中将偏航不准降低了5.5%和11.2%。平均净能量增益分别为0.31%和0.33%,与传统偏航控制算法相比。对于单个2MW涡轮机,这相当于每年1.5k-2.5k欧元的收益,对于整个风力发电场来说,这将产生非常显著的利润。

0
下载
关闭预览

相关内容

基于强化学习的空战动作生成
专知会员服务
131+阅读 · 2022年6月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年2月10日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员