Fractals offer the ability to generate fascinating geometric shapes with all sorts of unique characteristics (for instance, fractal geometry provides a basis for modelling infinite detail found in nature). While fractals are non-euclidean mathematical objects which possess an assortment of properties (e.g., attractivity and symmetry), they are also able to be scaled down, rotated, skewed and replicated in embedded contexts. Hence, many different types of fractals have come into limelight since their origin discovery. One particularly popular method for generating fractal geometry is using Julia sets. Julia sets provide a straightforward and innovative method for generating fractal geometry using an iterative computational modelling algorithm. In this paper, we present a method that combines Julia sets with dual-quaternion algebra. Dual-quaternions are an alluring principal with a whole range interesting mathematical possibilities. Extending fractal Julia sets to encompass dual-quaternions algebra provides us with a novel visualize solution. We explain the method of fractals using the dual-quaternions in combination with Julia sets. Our prototype implementation demonstrate an efficient methods for rendering fractal geometry using dual-quaternion Julia sets based upon an uncomplicated ray tracing algorithm. We show a number of different experimental isosurface examples to demonstrate the viability of our approach.


翻译:分形几何提供了利用各种独特特征生成各种迷人几何形状的能力。 尽管分形是非欧几里得数学对象,具有许多特性(例如,分形几何为模拟自然界中无限细节提供了基础),但它们也可以在嵌入式上下文中被缩小,旋转,扭曲和复制。 因此,自分形的起源发现以来,许多不同类型的分形已经进入了公众视野。 一种特别流行的生成分形几何的方法是使用朱利亚集。 朱利亚集提供了一种迭代计算建模算法的简单而创新的方法来生成分形几何。 在本文中,我们提出了一种将朱利亚集与双四元数代数相结合的方法。 双四元数是一个有吸引力的方式,具有一系列有趣的数学可能性。 将分形朱利亚集延伸到涵盖双四元数代数,为我们提供了一个新颖的可视化解决方案。 我们解释了使用双四元数与朱利亚集的分形方法。 我们的原型实现演示了使用简单的光线跟踪算法基于双四元数朱利亚集呈现分形几何的有效方法。 我们展示了许多不同的实验性等值面例子,以证明我们的方法的可行性。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】数论与几何:算术几何导论,501页pdf
专知会员服务
53+阅读 · 2022年12月22日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】数论与几何:算术几何导论,501页pdf
专知会员服务
53+阅读 · 2022年12月22日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员