Many streaming algorithms provide only a high-probability relative approximation. These two relaxations, of allowing approximation and randomization, seem necessary -- for many streaming problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and often trivial) space complexity. A common drawback of these randomized approximate algorithms is that independent executions on the same input have different outputs, that depend on their random coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with high probability the same ``canonical'' solution. We consider perhaps the most basic problem in data streams, of counting the number of items in a stream of length at most $n$. Morris's counter [CACM, 1978] is a randomized approximation algorithm for this problem that uses $O(\log\log n)$ bits of space, for every fixed approximation factor (greater than $1$). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-deterministic approximation algorithms can match this space complexity. Our main result answers their question negatively, and shows that such algorithms must use $\Omega(\sqrt{\log n / \log\log n})$ bits of space. Our approach is based on a problem that we call Shift Finding, and may be of independent interest. In this problem, one has query access to a shifted version of a known string $F\in\{0,1\}^{3n}$, which is guaranteed to start with $n$ zeros and end with $n$ ones, and the goal is to find the unknown shift using a small number of queries. We provide for this problem an algorithm that uses $O(\sqrt{n})$ queries. It remains open whether $poly(\log n)$ queries suffice; if true, then our techniques immediately imply a nearly-tight $\Omega(\log n/\log\log n)$ space bound for pseudo-deterministic approximate counting.
翻译:暂无翻译