Polygenic hazard score (PHS) models designed for European ancestry (EUR) individuals provide ample information regarding survival risk discrimination. Incorporating such information can improve the performance of risk discrimination in an internal small-sized non-EUR cohort. However, given that external EUR-based model and internal individual-level data come from different populations, ignoring population heterogeneity can introduce substantial bias. In this paper, we develop a Kullback-Leibler-based Cox model (CoxKL) to integrate internal individual-level time-to-event data with external risk scores derived from published prediction models, accounting for population heterogeneity. Partial-likelihood-based KL information is utilized to measure the discrepancy between the external risk information and the internal data. We establish the asymptotic properties of the CoxKL estimator. Simulation studies show that the integration model by the proposed CoxKL method achieves improved estimation efficiency and prediction accuracy. We applied the proposed method to develop a trans-ancestry PHS model for prostate cancer and found that integrating a previously published EUR-based PHS with an internal genotype data of African ancestry (AFR) males yielded considerable improvement on the prostate cancer risk discrimination.
翻译:为欧洲祖先(EUR)个人设计的多致危害评分(PHS)模型提供了大量关于生存风险歧视的信息。纳入这种信息可以改善内部小规模非UR组别中风险歧视的表现;然而,鉴于基于欧元的外部模型和内部个人数据来自不同人口,忽视人口异质性可带来重大偏差。在本文件中,我们开发了一个基于库列背-利贝尔的Cox模型(CoxKL),将内部个人一级时间到时间的数据与根据已公布的预测模型得出的外部风险评分(人口异性核算)相结合。部分类似KL信息用于衡量外部风险信息与内部数据之间的差异。我们建立了CoxKL估测器的无症状特性。模拟研究表明,拟议的CoxKL方法的整合模型提高了估计效率和预测准确性。我们采用拟议方法开发了用于前列腺癌的跨种族PHS模型,并发现将先前公布的PHS(基于EURA的大规模内部风险型号)纳入了前欧洲-美国-美国癌症风险评估。