We reconsider the evaluation of OOD detection methods for image recognition. Although many studies have been conducted so far to build better OOD detection methods, most of them follow Hendrycks and Gimpel's work for the method of experimental evaluation. While the unified evaluation method is necessary for a fair comparison, there is a question of if its choice of tasks and datasets reflect real-world applications and if the evaluation results can generalize to other OOD detection application scenarios. In this paper, we experimentally evaluate the performance of representative OOD detection methods for three scenarios, i.e., irrelevant input detection, novel class detection, and domain shift detection, on various datasets and classification tasks. The results show that differences in scenarios and datasets alter the relative performance among the methods. Our results can also be used as a guide for practitioners for the selection of OOD detection methods.


翻译:我们重新考虑对OOD探测方法的评价,以辨别图像。虽然迄今为止已经进行了许多研究,以建立更好的OOD探测方法,但大多数研究都遵循Hendrycks和Gimpel关于实验性评价方法的工作。虽然统一评价方法对于公平比较是必要的,但有一个问题,即它的任务和数据集的选择是否反映了现实世界的应用,以及评价结果能否概括到OOD检测应用的其他情景。在本文件中,我们实验性地评估了代表OOOD探测方法在三种情景(即不相关的输入检测、新分类检测和域位转移检测)中的各种数据集和分类任务方面的绩效。结果显示,情景和数据集的差异改变了这些方法的相对性能。我们的结果也可以用作操作人员选择OD检测方法的指南。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
13+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Comparative Evaluation of Quantification Methods
Arxiv
0+阅读 · 2021年3月4日
Arxiv
8+阅读 · 2018年4月12日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
13+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员