Humans often speak in a continuous manner which leads to coherent and consistent prosody properties across neighboring utterances. However, most state-of-the-art speech synthesis systems only consider the information within each sentence and ignore the contextual semantic and acoustic features. This makes it inadequate to generate high-quality paragraph-level speech which requires high expressiveness and naturalness. To synthesize natural and expressive speech for a paragraph, a context-aware speech synthesis system named MaskedSpeech is proposed in this paper, which considers both contextual semantic and acoustic features. Inspired by the masking strategy in the speech editing research, the acoustic features of the current sentence are masked out and concatenated with those of contextual speech, and further used as additional model input. The phoneme encoder takes the concatenated phoneme sequence from neighboring sentences as input and learns fine-grained semantic information from contextual text. Furthermore, cross-utterance coarse-grained semantic features are employed to improve the prosody generation. The model is trained to reconstruct the masked acoustic features with the augmentation of both the contextual semantic and acoustic features. Experimental results demonstrate that the proposed MaskedSpeech outperformed the baseline system significantly in terms of naturalness and expressiveness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员