In this paper, we develop a family of high order cut discontinuous Galerkin (DG) methods for hyperbolic conservation laws in one space dimension. The ghost penalty stabilization is used to stabilize the scheme for small cut elements. The analysis shows that our proposed methods have similar stability and accuracy properties as the standard DG methods on a regular mesh. We also prove that the cut DG method with piecewise constants in space is total variation diminishing (TVD). We use the strong stability preserving Runge-Kutta method for time discretization and the time step is independent of the size of cut element. Numerical examples demonstrate that the cut DG methods are high order accurate for smooth problems and perform well for discontinuous problems.
翻译:在本文中,我们开发了一个高定序断开不连续的Galerkin(DG)系统,用于一个空间层面的双曲保护法。 幽灵惩罚稳定化用于稳定小切块计划。 分析表明,我们提出的方法与常规网格中标准DG方法具有相似的稳定性和准确性。 我们还证明,带有零星空间常数的切割DG方法是完全变换( TVD ) 。 我们使用坚固的保存龙格- 库塔方法进行时间分解,而时间步骤与切割元素的大小无关。 数字实例表明,切开的DG方法对于顺利解决问题非常精确,对于不连续的问题表现良好。