Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM2.5) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM2.5 concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a more accurate ERF estimate. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM2.5 on all-cause mortality among Medicare enrollees in New England from 2000-2012.
翻译:最近,许多这类研究已开始采用高分辨率预测PM2.5浓度的预测PM2.5浓度,这可能会发生测量错误。先前的暴露测量错误校正方法要么在非因果环境中应用过,要么只考虑绝对暴露。此外,大多数程序在安装暴露反应功能时,未能考虑到错误校正引起的不确定性。为了纠正这些缺陷,我们制定了一个多重估算框架,将回归校准和巴伊西亚技术结合起来,以估计因果的ERF。我们展示了测量错误校正步骤的产出如何能够无缝地融入贝叶西亚累加回归树(BART)中。我们还展示了如何使用当地加权的BART的海砂样品光度来生成更准确的ERF估计值。我们提出的方法还恰当地宣传了暴露测量误差的不确定性,以得出准确的标准误差估计。我们在一项广泛的模拟研究中评估了拟议方法的稳健性。我们随后运用了我们的方法来估计2000-2012年IMFS的死亡率。我们从2000年开始采用新的方法来估计MDFS。