Detecting potential optimal peak areas and locating the accurate peaks in these areas are two major challenges in Multimodal Optimization problems (MMOPs). To address them, much efforts have been spent on developing novel searching operators, niching strategies and multi-objective problem transformation pipelines. Though promising, existing approaches more or less overlook the potential usage of landscape knowledge. In this paper, we propose a novel optimization framework tailored for MMOPs, termed as APDMMO, which facilitates peak detection via fully leveraging the landscape knowledge and hence capable of providing strong optimization performance on MMOPs. Specifically, we first design a novel surrogate landscape model which ensembles a group of non-linear activation units to improve the regression accuracy on diverse MMOPs. Then we propose a free-of-trial peak detection method which efficiently locates potential peak areas through back-propagation on the learned surrogate landscape model. Based on the detected peak areas, we employ SEP-CMAES for local search within these areas in parallel to further improve the accuracy of the found optima. Extensive benchmarking results demonstrate that APDMMO outperforms several up-to-date baselines. Further ablation studies verify the effectiveness of the proposed novel designs. The source-code is available at ~\href{}{https://github.com/GMC-DRL/APDMMO}.
翻译:暂无翻译