In an MPC-protected distributed computation, although the use of MPC assures data privacy during computation, sensitive information may still be inferred by curious MPC participants from the computation output. This can be observed, for instance, in the inference attacks on either federated learning or a more standard statistical computation with distributed inputs. In this work, we address this output privacy issue by proposing a discrete and bounded Laplace-inspired perturbation mechanism along with a secure realization of this mechanism using MPC. The proposed mechanism strictly adheres to a zero failure probability, overcoming the limitation encountered on other existing bounded and discrete variants of Laplace perturbation. We provide analyses of the proposed differential privacy (DP) perturbation in terms of its privacy and utility. Additionally, we designed MPC protocols to implement this mechanism and presented performance benchmarks based on our experimental setup. The MPC realization of the proposed mechanism exhibits a complexity similar to the state-of-the-art discrete Gaussian mechanism, which can be considered an alternative with comparable efficiency while providing stronger differential privacy guarantee. Moreover, efficiency of the proposed scheme can be further enhanced by performing the noise generation offline while leaving the perturbation phase online.
翻译:暂无翻译