As robots across domains start collaborating with humans in shared environments, algorithms that enable them to reason over human intent are important to achieve safe interplay. In our work, we study human intent through the problem of predicting trajectories in dynamic environments. We explore domains where navigation guidelines are relatively strictly defined but not clearly marked in their physical environments. We hypothesize that within these domains, agents tend to exhibit short-term motion patterns that reveal context information related to the agent's general direction, intermediate goals and rules of motion, e.g., social behavior. From this intuition, we propose Social-PatteRNN, an algorithm for recurrent, multi-modal trajectory prediction that exploits motion patterns to encode the aforesaid contexts. Our approach guides long-term trajectory prediction by learning to predict short-term motion patterns. It then extracts sub-goal information from the patterns and aggregates it as social context. We assess our approach across three domains: humans crowds, humans in sports and manned aircraft in terminal airspace, achieving state-of-the-art performance.
翻译:随着跨领域的机器人开始在共享环境中与人类合作,使机器人能够理解人类意图的算法对于实现安全互动非常重要。 在我们的工作中,我们通过预测动态环境中的轨迹来研究人类意图。 我们探索导航指南相对严格但物理环境中没有明确标记的领域。 我们假设,在这些域内,代理人往往展示短期运动模式,揭示与代理人总体方向、中期目标和运动规则有关的背景信息,例如社会行为。我们从这一直觉中提出社会-PattERNN,这是利用运动模式对上述环境进行编码的经常性、多模式轨迹预测的算法。我们的方法通过学习预测短期运动模式来指导长期的轨迹预测。然后,我们从这些模式中提取次级目标信息,将其汇总为社会背景。我们从三个领域评估了我们的方法:人类人群、在终端空域的体育和载人飞行器中的人类,实现最先进的性能。